Osteopontin, a macrophage-derived matricellular glycoprotein, inhibits axon outgrowth.
نویسندگان
چکیده
Transected axons can regenerate beyond the site of injury in the peripheral but not in the central nervous system (CNS). Increasing evidence implicates inflammatory processes as modulators of axon regeneration after injury. In this study, we addressed a possible role of the matricellular glycoprotein osteopontin (OPN) using crush lesions of the optic and sciatic nerve as models of central and peripheral axotomy, respectively. OPN was strongly expressed by macrophages at the crush site in the optic but not sciatic nerve, indicating fundamental differences in the molecular programming of macrophages in both systems. Functionally, OPN exerted potent growth-inhibitory effects in an in vitro assay of axon outgrowth. Therefore, OPN expression by lesion-associated macrophages may contribute to the nonpermissive nature of the adult CNS preventing axonal regeneration following injury.
منابع مشابه
The glia-derived extracellular matrix glycoprotein tenascin-C promotes embryonic and postnatal retina axon outgrowth via the alternatively spliced fibronectin type III domain TNfnD.
Tenascin-C (Tnc) is an astrocytic multifunctional extracellular matrix (ECM) glycoprotein that potentially promotes or inhibits neurite outgrowth. To investigate its possible functions for retinal development, explants from embryonic day 18 (E18) rat retinas were cultivated on culture substrates composed of poly-d-lysine (PDL), or PDL additionally coated with Tnc or laminin (LN)-1, which signif...
متن کاملOsteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification
Vascular calcification (VC) is a highly regulated ectopic mineral deposition process involving immune cell infiltration in the vasculatures, which has been recognized to be promoted by hypertension. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells as a potential inflammatory mediator of vascular injury. This study aims to examine whether OPN is involved in t...
متن کاملThe Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors.
Neuronal Nogo-66 receptor 1 (NgR1) has been proposed to function as an obligatory coreceptor for the myelin-derived ligands Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) to mediate neurite outgrowth inhibition by these ligands. To examine the contribution of neuronal NgR1 to outgrowth inhibition, we used two different strategies, genetic ablation o...
متن کاملPromotion of axon regeneration by myelin-associated glycoprotein and Nogo through divergent signals downstream of Gi/G.
Several myelin-derived proteins have been identified as components of the CNS myelin that prevents axonal regeneration in the adult vertebrate CNS. Activation of RhoA has been shown to be an essential part of the signaling mechanism of these proteins. Here we report an additional signal, which determines whether these proteins promote or inhibit axon outgrowth. Myelin-associated glycoprotein (M...
متن کاملA novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer’s models
Osteopontin (OPN), a matricellular immunomodulatory cytokine highly expressed by myelomonocytic cells, is known to regulate immune cell migration, communication, and response to brain injury. Enhanced cerebral recruitment of monocytes achieved through glatiramer acetate (GA) immunization or peripheral blood enrichment with bone marrow (BM)-derived CD115+ monocytes (MoBM) curbs amyloid β-protein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2005